4727

4727 Further Pure Mathematics 3

	D1 1	
1 (a) (i) e.g. $ap \neq pa \Rightarrow$ not commutative	B1 1	For correct reason and conclusion
(ii) 3	B1 1	For correct number For correct elements
(iii) <i>e</i> , <i>a</i> , <i>b</i>	B1 1	
(b) c^3 has order 2	B1	For correct order
c^4 has order 3	B1	For correct order
c^5 has order 6	B1 3	For correct order
	6	
2 $m^2 - 8m + 16 = 0$	M1	For stating and attempting to solve auxiliary eqn
$\Rightarrow m = 4$	A1	For correct solution
\Rightarrow CF (y =) (A + Bx)e ^{4x}	A1√	For CF of correct form. f.t. from <i>m</i>
For PI try $y = px + q$	M1	For using linear expression for PI
$\Rightarrow -8p + 16(px + q) = 4x$		
$\implies p = \frac{1}{4} q = \frac{1}{8}$	A1 A1	For correct coefficients
\Rightarrow GS $y = (A + Bx)e^{4x} + \frac{1}{4}x + \frac{1}{8}$	B1√ 7	For $GS = CF + PI$. Requires $y = 1$. f.t. from CF and PI with
		2 arbitrary constants in CF and none in PI
	7	
2 (i) line comment 04	B1	For stating line through O OR A
3 (i) line segment <i>OA</i>	B1 2	For correct description AEF
(ii) $(\mathbf{r} - \mathbf{a}) \times (\mathbf{r} - \mathbf{b}) = \overrightarrow{AP} \times \overrightarrow{BP}$	B1	For identifying $\mathbf{r} - \mathbf{a}$ with \overrightarrow{AP} and $\mathbf{r} - \mathbf{b}$ with \overrightarrow{BP}
		Allow direction errors
$= AP BP \sin\pi \cdot \hat{\mathbf{n}} = 0$	B1 2	For using \times of 2 parallel vectors = 0
		$OR \sin \pi = 0 \text{ or } \sin 0 = 0$ in an appropriate vector expression
("") l'actional Q	B1	For stating line
(iii) line through O	B1	For stating through <i>O</i>
parallel to <i>AB</i>	B1 3	For stating correct direction
		SR For \overrightarrow{AB} or \overrightarrow{BA} allow B1 B0 B1
	7	
4 $(C+iS =) \int_{0}^{\frac{1}{2}\pi} e^{2x} (\cos 3x + i\sin 3x) (dx)$		
$\cos 3x + i \sin 3x = e^{3ix}$	B1	For using de Moivre, seen or implied
$\int_0^{\frac{1}{2}\pi} e^{(2+3i)x} (dx) = \frac{1}{2+3i} \left[e^{(2+3i)x} \right]_0^{\frac{1}{2}\pi}$	M1* A1	For writing as a single integral in exp form For correct integration (ignore limits)
$=\frac{2-3i}{4+9}\left(e^{(2+3i)\frac{1}{2}\pi}-e^{0}\right)=\frac{2-3i}{13}\left(-ie^{\pi}-1\right)$	A1	For substituting limits correctly (unsimplified)
4+9 () 13 ()	M1 (dep*)	(may be earned at any stage) For multiplying by complex conjugate of 2+3i
$= \left\{ \frac{1}{13} \left(-2 - 3e^{\pi} + i(3 - 2e^{\pi}) \right) \right\}$	M1 (dep*)	For equating real and/or imaginary parts
$C = -\frac{1}{13} \left(2 + 3\mathrm{e}^{\pi} \right)$	A1	For correct expression AG
$S = \frac{1}{13} \left(3 - 2e^{\pi} \right)$	A1	For correct expression
	8	

physicsandmathstutor.com

4727

Mark Scheme

	1	1
5 (i) IF $e^{\int \frac{1}{x} dx} = e^{\ln x} = x$ $OR x \frac{dy}{dx} + y = x \sin 2x$	M1	For correct process for finding integrating factor OR for multiplying equation through by x
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\sin 2x$	A1	For writing DE in this form (may be implied)
$\Rightarrow xy = \int x \sin 2x (\mathrm{d}x)$	M1	For integration by parts the correct way round
$xy = -\frac{1}{2}x\cos 2x + \frac{1}{2}\int \cos 2x(dx)$	A1	For 1st term correct
$xy = -\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x (+c)$	M1	For their 1st term and attempt at integration of $\frac{\cos kx}{\sin kx}$
$\Rightarrow y = -\frac{1}{2}\cos 2x + \frac{1}{4x}\sin 2x + \frac{c}{x}$	A1 6	For correct expression for <i>y</i>
(ii) $\left(\frac{1}{4}\pi, \frac{2}{\pi}\right) \Rightarrow \frac{2}{\pi} = \frac{1}{\pi} + \frac{4c}{\pi} \Rightarrow c = \frac{1}{4}$	M1	For substituting $\left(\frac{1}{4}\pi, \frac{2}{\pi}\right)$ in solution
$\Rightarrow y = -\frac{1}{2}\cos 2x + \frac{1}{4x}\sin 2x + \frac{1}{4x}$	A1 2	For correct solution. Requires $y = $.
(iii) $(y \approx) -\frac{1}{2}\cos 2x$	B1√ 1	For correct function AEF f.t. from (ii)
	9	
6 (i)		<i>Either coordinates or vectors may be used</i> Methods 1 and 2 may be combined, for a maximum of 5 marks
METHOD 1		
State $B = (-1, -7, 2) + t(1, 2, -2)$	M1	For using vector normal to plane
On plane $\Rightarrow (-1+t) + 2(-7+2t) - 2(2-2t) = -1$	M1 M1	For substituting parametric form into plane For solving a linear equation in t
$\Rightarrow t = 2 \Rightarrow B = (1, -3, -2)$	A1	For correct coordinates
$AB = \sqrt{2^2 + 4^2 + 4^2} OR 2\sqrt{1^2 + 2^2 + 2^2} = 6$	A1 5	For correct length of <i>AB</i>
METHOD 2 $AB = \left \frac{-1 - 14 - 4 + 1}{\sqrt{1^2 + 2^2 + 2^2}} \right = 6$		
$ \sqrt{1^{2} + 2^{2} + 2^{2}} $ $OR \ AB = \mathbf{AC} \cdot \mathbf{AB} = \frac{[6, 7, 1] \cdot [1, 2, -2]}{\sqrt{1^{2} + 2^{2} + 2^{2}}} = 6$	M1 A1	For using a correct distance formula For correct length of <i>AB</i>
$B = (-1, -7, 2) \pm 6 \frac{(1, 2, -2)}{\sqrt{1^2 + 2^2 + 2^2}}$	M1	For using $B = A + \text{length of } AB \times \text{unit normal}$
$B = (-1, -7, 2) \pm (2, 4, -4)$	B1	For checking whether + or – is needed (substitute into plane equation)
B = (1, -3, -2)	A1	For correct coordinates (allow even if B0)
(ii) Find vector product of any two of $\pm [6, 7, 1], \pm [6, -3, 0], \pm (0, 10, 1)$	M1	For finding vector product of two relevant vectors
Obtain $k[1, 2, -20]$	A1	For correct vector n
$\theta = \cos^{-1} \frac{ [1, 2, -2] \cdot [1, 2, -20] }{\sqrt{1^2 + 2^2 + 2^2} \sqrt{1^2 + 2^2 + 20^2}}$	M1* M1 (dep*)	For using scalar product of two normal vectors For stating both moduli in denominator
$\theta = \cos^{-1} \frac{45}{\sqrt{9}\sqrt{405}} = 41.8^{\circ} (41.810^{\circ}, 0.72972)$	$\begin{array}{c} (acp \) \\ A1 \\ A1 \ 6 \\ \hline 11 \end{array}$	For correct scalar product. f.t. from n For correct angle

physicsandmathstutor.com

4727

Mark Scheme

7 (i) (a) $\sin \frac{6}{8}\pi = \frac{1}{\sqrt{2}}$, $\sin \frac{2}{8}\pi = \frac{1}{\sqrt{2}}$	B1	1	For verifying $\theta = \frac{1}{8}\pi$
(b)	M1		For sketching $y = \sin 6\theta$ and $y = \sin 2\theta$ for 0,, θ ,, $\frac{1}{2}\pi$ <i>OR</i> any other correct method for solving $\sin 6\theta = \sin 2\theta$ for $\theta \neq k \frac{\pi}{2}$ <i>OR</i> appropriate use of symmetry
			OR appropriate use of symmetry OR attempt to verify a reasonable guess for θ
$\theta = \frac{3}{8}\pi$	A1	2	For correct θ
(ii) Im $(c+is)^6 = 6c^5s - 20c^3s^3 + 6cs^5$	M1 A1		For expanding $(c+is)^6$; at least 3 terms and 3 binomial coefficients needed For 3 correct terms
$\sin 6\theta = \sin \theta \left(6c^5 - 20c^3(1 - c^2) + 6c(1 - c^2)^2 \right)$	M1		For using $s^2 = 1 - c^2$
$\sin 6\theta = \sin \theta \left(32c^5 - 32c^3 + 6c \right)$	A1		For any correct intermediate stage
$\sin 6\theta = 2\sin\theta\cos\theta \left(16c^4 - 16c^2 + 3\right)$	A1		For obtaining this expression correctly
$\sin 6\theta = \sin 2\theta \left(16\cos^4\theta - 16\cos^2\theta + 3\right)$		5	AG
(iii) $16c^4 - 16c^2 + 3 = 1$	M1		For stating this equation AEF
$\Rightarrow c^2 = \frac{2 \pm \sqrt{2}}{4}$	A1		For obtaining both values of c^2
- sign requires larger $\theta = \frac{3}{8}\pi$	A1	3	For stating and justifying $\theta = \frac{3}{8}\pi$
	1	1	Calculator OK if figures seen

physicsandmathstutor.com

4727

Mark Scheme

January 2008

8 (i) Group A: $e = 6$ Group B: $e = 1$ Group C: $e = 2^0$ OR 1 Group D: $e = 1$	B1 B1 2	For any two correct identities For two other correct identities AEF for <i>D</i> , but not " $m = n$ "
(ii) $EITHER$ OR A 2 4 6 8 2 4 8 2 6 orders of elements 4 8 6 4 2 1, 2, 4, 4 6 2 4 6 8 OR cyclic group 8 6 2 8 4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1* B1*	For showing group table <i>OR</i> sufficient details of orders of elements <i>OR</i> stating cyclic / non-cyclic / Klein group (as appropriate) for one of groups <i>A</i> , <i>B</i> , <i>C</i> for another of groups <i>A</i> , <i>B</i> , <i>C</i>
$A \ncong B$ $B \ncong C$ $A \cong C$	B1 (dep*) B1 (dep*) B1 (dep*) 5	For stating non-isomorphic For stating non-isomorphic For stating isomorphic
(iii) $\frac{1+2m}{1+2n} \times \frac{1+2p}{1+2q} = \frac{1+2m+2p+4mp}{1+2n+2q+4nq}$ = $\frac{1+2(m+p+2mp)}{1+2(n+q+2nq)} \equiv \frac{1+2r}{1+2s}$	M1* M1 (dep*) A1 A1 4	For considering product of 2 distinct elements of this form For multiplying out For simplifying to form shown For identifying as correct form, so closed
(iv) Closure not satisfied	B1	$SR \frac{odd}{odd} \times \frac{odd}{odd} = \frac{odd}{odd} \text{ earns full credit}$ $SR \text{ If clearly attempting to prove commutativity, allow at most M1}$ For stating closure
Identity and inverse not satisfied	B1 2	For stating identity and inverse SR If associativity is stated as not satisfied, then award at most B1 B0 <i>OR</i> B0 B1